17 Performance


17.1 Debugging

In R, you use multiple functions on different types of data objects. Moreover, you “typically solve complex problems by decomposing them into simple functions, not simple objects.” (H. Wickham)

Problems print to the console

warning("This is what a warning looks like")
stop("This is what an error looks like")
## Error: This is what an error looks like

Nonproblems also print to the console

message("This is what a message looks like")
cat('cat\n')
## cat
print('print')
## [1] "print"

Tracing.

Consider this example of an error process (originally taken from https://adv-r.hadley.nz/ ).

# Let i() check if its argument is numeric
i <- function(i0) {
  if ( !is.numeric(i0) ) {
    stop("`d` must be numeric", call.=FALSE)
  }
  i0 + 10
}

# Let f() call g() call h() call i()
h <- function(i0) i(i0)
g <- function(h0) h(h0)
f <- function(g0) g(g0)

# Observe Error
f("a")
## Error: `d` must be numeric

First try simple print debugging

f2 <- function(g0) {
  cat("f2 calls g2()\n")
  g2(g0)
}
g2 <- function(h0) {
  cat("g2 calls h2() \n")
  cat("b =", h0, "\n")
  h2(h0)
}
h2 <- function(i0) {
  cat("h2 call i() \n")
  i(i0)
}

f2("a")
## f2 calls g2()
## g2 calls h2() 
## b = a 
## h2 call i()
## Error: `d` must be numeric

If that fails, try traceback debugging

traceback()
## No traceback available

And if that fails, try an Interactive approach

g3 <- function(h0) {
  browser()
  h(h0)
}
f3 <- function(g0){
  g3(g0)
}
f3("a")
## Called from: g3(g0)
## debug: h(h0)
## Error: `d` must be numeric

Isolating.

To inspect objects

is.object(f)
is.object(c(1,1))

class(f)
class(c(1,1))

# Storage Mode Type 
typeof(f)
typeof(c(1,1))

storage.mode(f)
storage.mode(c(1,1))

To check for valid inputs/outputs

x <- c(NA, NULL, NaN, Inf, 0)

cat("Vector to inspect: ")
x

cat("NA: ")
is.na(x)

cat("NULL: ")
is.null(x)

cat("NaN: ")
is.nan(x)

cat("Finite: ")
is.finite(x)

cat("Infinite: ")
is.infinite(x)
# Many others

To check for values

all( x > -2 )
any( x > -2 )
# Check Matrix Rows
rowAny <- function(x) rowSums(x) > 0
rowAll <- function(x) rowSums(x) == ncol(x)

Handling.

Simplest example

x <- 'A'
tryCatch(
  expr = log(x),
  error = function(e) {
        message('Caught an error but did not break')
        print(e)
        return(NA)
})

Another example

x <- -2
tryCatch(
  expr = log(x),
  error = function(e) {
        message('Caught an error but did not break')
        print(e)
        return(NA)
    },
    warning = function(w){
        message('Caught a warning!')
        print(w)
        return(NA)        
    },
    finally = {
        message("Returned log(x) if successfull or NA if Error or Warning")
    }
)
## <simpleWarning in log(x): NaNs produced>
## [1] NA

Safe Functions

# Define
log_safe <- function(x){
    lnx <- tryCatch(
        expr = log(x),
        error = function(e){
            cat('Error Caught: \n\t')        
            print(e)
            return(NA)            
        },
        warning = function(w){
            cat('Warning Caught: \n\t')
            print(w)
            return(NA)            
        })
    return(lnx)
}

# Test 
log_safe( 1)
## [1] 0
log_safe(-1)
## Warning Caught: 
##  <simpleWarning in log(x): NaNs produced>
## [1] NA
log_safe(' ')
## Error Caught: 
##  <simpleError in log(x): non-numeric argument to mathematical function>
## [1] NA
# Further Tests
s <- sapply(list("A",Inf, -Inf, NA, NaN, 0, -1, 1), log_safe)
## Error Caught: 
##  <simpleError in log(x): non-numeric argument to mathematical function>
## Warning Caught: 
##  <simpleWarning in log(x): NaNs produced>
## Warning Caught: 
##  <simpleWarning in log(x): NaNs produced>
s
## [1]   NA  Inf   NA   NA  NaN -Inf   NA    0

17.2 Optimizing

In General, clean code is faster and less error prone.

By optimizing repetitive tasks, you end up with code that

  • is cleaner, faster, and more general
  • can be easily parallelized

So, after identifying a bottleneck, try

  1. vectorize your code
  2. use a dedicated package
  3. use parallel computations
  4. compile your code in C++

But remember

  • Don’t waste time optimizing code that is not holding you back.
  • Look at what has already done.

Benchmarking.

For identifying bottlenecks, the simplest approach is to time how long a code-chunk runs

system.time({
    x0 <- runif(1e5)
    x1 <- sqrt(x0)
    x2 <- paste0('J-', x1)
})
##    user  system elapsed 
##   0.130   0.008   0.139

You can visually identify bottlenecks in larger blocks

# Generate Large Random Dataset
n <- 2e6
x <- runif(n)
y <- runif(n)
z <- runif(n)
XYZ <- cbind(x,y,z)

# Inspect 4 equivalent `row mean` calculations 
profvis::profvis({
    m <- rowSums(XYZ)/ncol(XYZ)
    m <- rowMeans(XYZ)
    m <- apply(XYZ, 1, mean)
    m <- rep(NA, n);  for(i in 1:n){ m[i] <- (x[i] + y[i] + z[i]) / 3 }
})
# rowSums(), colSums(), rowMeans(), and colMeans() are vectorised and fast.
# for loop is not the slowest, but the ugliest.

For systematic speed comparisons, try a benchmarking package

# 3 Equivalent calculations of the mean of a vector
mean1 <- function(x,p=1) mean(x^p)
mean2 <- function(x,p=1) sum(x^p) / length(x)
mean3 <- function(x,p=1) mean.default(x^p)

# Time them
x <- runif(1e6)
microbenchmark::microbenchmark(
  mean1(x,.5),
  mean2(x,.5),
  mean3(x,.5),
  times=20
)
## Unit: milliseconds
##           expr      min       lq     mean   median       uq      max neval cld
##  mean1(x, 0.5) 21.22159 24.05092 27.19083 26.93219 29.28603 38.83637    20   a
##  mean2(x, 0.5) 22.64585 23.40534 25.91066 24.89418 27.29905 35.28588    20   a
##  mean3(x, 0.5) 21.49653 24.04798 26.32646 25.70899 29.43275 31.42388    20   a
# Time them (w/ memory)
bench::mark(
  mean1(x,.5),
  mean2(x,.5),
  mean3(x,.5),
  iterations=20
)
## # A tibble: 3 × 6
##   expression         min   median `itr/sec` mem_alloc `gc/sec`
##   <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
## 1 mean1(x, 0.5)   20.8ms   22.7ms      44.7    7.63MB     0   
## 2 mean2(x, 0.5)   19.4ms     22ms      47.2    7.63MB     2.49
## 3 mean3(x, 0.5)   20.8ms   23.1ms      44.2    7.63MB     2.33

Vectorize.

Computers are really good at math, so exploit this.

Vector operations are generally faster and easier to read than loops

# Compare 2 moving averages
x <- runif(2e6)

# First Try
ma1 <- function(y){
    z <- y*NA
    for(i in 2:length(y)){
        z[i] <- (y[i]-y[i-1])/2
    }
    return(z)
}

# Optimized using diff
diff( c(2,2,10,9) )
## [1]  0  8 -1
ma2 <- function(y){
    z2 <- diff(y)/2
    z2 <- c(NA, z2) 
    return(z2)
}

all.equal(ma1(x),ma2(x))
## [1] TRUE
system.time( ma1(x) )
##    user  system elapsed 
##   0.153   0.000   0.154
system.time( ma2(x) )
##    user  system elapsed 
##   0.018   0.011   0.029
ma3 <- compiler::cmpfun(ma2)
system.time( ma3(x) )
##    user  system elapsed 
##    0.02    0.00    0.02

Likewise, matrix operations are often faster than vector operations.

Memory Usage.

For finding problematic blocks utils::Rprof(memory.profiling = TRUE) logs total memory usage of R at regular time intervals. E.g.

Rprof( interval = 0.005)
    # Create Data
    x <- runif(2e6)
    y <- sqrt(x)
    # Loop Format Data
    z <- y*NA
    for(i in 2:length(y)){ z[i] <- (y[i]-y[i-1])/2 }
    # Regression
    X <- cbind(1,x)[-1,]
    Z <- z[-1]
    reg_fast <- .lm.fit(X, Z)
Rprof(NULL)
summaryRprof()

For finding problematic functions: utils::Rprofmem() logs memory usage at each call

For finding problematic scripts, see “Advanced Optimization”. (With Rprof, you can identifying bottlenecks on a cluster without a GUI.)

Packages.

Before creating your own program, check if there is a faster or more memory efficient version. E.g., data.table or Rfast2 for basic data manipulation.

Some functions are simply wrappers for the function you want, and calling it directly can speed things up.

X <- cbind(1, runif(1e6))
Y <- X %*% c(1,2) + rnorm(1e6)
DAT <- as.data.frame(cbind(Y,X))

system.time({ lm(Y~X, data=DAT) })
##    user  system elapsed 
##   0.550   0.010   0.179
system.time({ .lm.fit(X, Y) })
##    user  system elapsed 
##   0.104   0.000   0.030
system.time({ solve(t(X)%*%X) %*% (t(X)%*%Y) })
##    user  system elapsed 
##   0.017   0.000   0.015

Note that such functions to have fewer checks and return less information, so you must know exactly what you are putting in and getting out.

Parallel.

Sometimes there will still be a problematic bottleneck.

Your next step should be parallelism:

  • Write the function as a general vectorized function.
  • Apply the same function to every element in a list at the same time
# lapply in parallel on {m}ultiple {c}ores
x <- c(10,20,30,40,50)
f <- function(element) { element^element }
parallel::mclapply( x, mc.cores=2, FUN=f)
## [[1]]
## [1] 1e+10
## 
## [[2]]
## [1] 1.048576e+26
## 
## [[3]]
## [1] 2.058911e+44
## 
## [[4]]
## [1] 1.208926e+64
## 
## [[5]]
## [1] 8.881784e+84

More power is often not the solution

# vectorize and compile
e_power_e_fun <- compiler::cmpfun( function(vector){ vector^vector} )

# base R
x <- 0:1E6
s_vc <- system.time( e_power_e_vec <- e_power_e_fun(x) )
s_vc
##    user  system elapsed 
##   0.020   0.001   0.021
# brute power
x <- 0:1E6
s_bp <- system.time({
  e_power_e_mc <- unlist( parallel::mclapply(x, mc.cores=2, FUN=e_power_e_fun))
})
s_bp
##    user  system elapsed 
##   1.186   0.204   0.878
# Same results
all(e_power_e_vec==e_power_e_mc)
## [1] TRUE

Note that parallelism does not go well with a GUI.

17.3 Advanced Optimizing

If you still are stuck, you can

  • try Amazon Web Server for more brute-power
  • rewrite bottlenecks with a working C++ compiler or Fortran compiler.

Before doing that, however, look into https://cran.r-project.org/web/views/HighPerformanceComputing.html

In what follows, note that there are alternative ways to run R via the command line. For example,

# Method 1
R -e "source('MyFirstScript.R')"
# Method 2
R CMD BATCH MyFirstScript.R

Cluster Computing

For parallel computations on a computer cluster, you will need to use both R and the linux command line.

R --slave -e '1:10'

R --slave -e '
    1:10
    seq(0,1,by=.2)
    paste(c("A","D"), 1:2)
'
##  [1]  1  2  3  4  5  6  7  8  9 10
##  [1]  1  2  3  4  5  6  7  8  9 10
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
## [1] "A 1" "D 2"
R --slave -e '
    .libPaths("~/R-Libs")    
    options(repos="https://cloud.r-project.org/")
    
    update.packages(ask=F)
    
    suppressPackageStartupMessages(library(stargazer))
'    

You will often want to rerun entire scripts with a different parameter. To do so, you need to edit your R scripts to accept parameters from the command line

args <- commandArgs(TRUE)

For example

R --slave -e '
    args <- commandArgs(TRUE)
    paste0(1, args)
' --args a b c

R --slave -e '
    args <- commandArgs(TRUE)
    my_numbers <- as.numeric(args)
    my_numbers + 1
' --args $(seq 1 10)
## [1] "1a" "1b" "1c"
##  [1]  2  3  4  5  6  7  8  9 10 11

You can also store the output and computer resources of a script. For example, save the last script as RBLOCK.R in the folder $HOME/R_Code and run the following

# Which Code
RDIR=$HOME/R_Code #main directory
infile=$RDIR/RBLOCK.R #specific code
outfile=$RDIR/R_Logs/RBLOCK$design_N.Rout #log R output
memfile=$RDIR/R_Logs/RBLOCK$design_N.Rtime #log computer resources

# Execute the Script and store resource useage via `time`
command time -o $memfile -v \
    R CMD BATCH --no-save --quiet --no-restore "--args 1 2 3" $infile $outfile 

Note that you need to have https://ftp.gnu.org/gnu/time installed

On an academic computing cluster, you may have to use a scheduler like slurm. In which case you can submit a bash script

sbatch  --mem 10GB --time=0-01:00:00 -a 50 SlurmJob.sh

where SlurmJob.sh looks like

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --error=$HOME/R_Code/Slurm_Logs/%x.error-%j
#SBATCH --output=$HOME/R_Code/Slurm_Logs/%x.out-%j

# Which Code
RDIR=$HOME/R_Code
infile=$RDIR/RBLOCK.R
outfile=$RDIR/R_Logs/RBLOCK$design_N.Rout
memfile=$RDIR/R_Logs/RBLOCK$design_N.Rtime

# Which Parameter
a="${SLURM_ARRAY_TASK_ID}"

# Execute the Script with a specific parameter, and store memory/time useage
command time -o $memfile -v \
    R CMD BATCH --no-save --quiet --no-restore "--args $a" $infile $outfile 

# Summarize memory/time useage
echo "design_N: $design_N Gridpoints"
cat $memfile | awk '/User time/ {printf "Time: %.2f Hours\n", $4/3600}'
cat $memfile | awk '/Maximum resident set size/ {printf "Memory: %.2f GB\n", $6/1048576}'
echo "Partition: $SLURM_JOB_PARTITION"

Compiled Code.

You can use C++ code within R to speed up a specific chunk.

To get C++ on your computer

  • On Windows, install Rtools.
  • On Mac, install Xcode from the app store.
  • On Linux, sudo apt-get install r-base-dev or similar.

To call C++ from R use package Rcpp

Rcpp::cppFunction('
  int add(int x, int y, int z) {
    int sum = x + y + z;
    return sum;
  }'
)
add(1, 2, 3)
## [1] 6

For help getting started with Rcpp, see https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-quickref.pdf

First try to use C++ (or Fortran) code that others have written

.C
.Fortran

For a tutorial, see https://masuday.github.io/fortran_tutorial/r.html

17.4 More Literature

Advanced Programming

For debugging tips

For optimization tips

For parallel programming

For general tips