13  Data Analysis


13.1 Inputs

Reading Data.

The first step in data analysis is getting data into R. There are many ways to do this, depending on your data structure. Perhaps the most common case is reading in a csv file.

Code
# Read in csv (downloaded from online)
# download source 'http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF19-3.csv'
# download destination '~/TableF19-3.csv'
read.csv('~/TableF19-3.csv')
 
# Can read in csv (directly from online)
# dat_csv <- read.csv('http://www.stern.nyu.edu/~wgreene/Text/Edition7/TableF19-3.csv')

Reading in other types of data can require the use of “packages”. For example, the “wooldridge” package contains datasets on crime. To use this data, we must first install the package on our computer. Then, to access the data, we must first load the package.

Code
# Install R Data Package and Load in
install.packages('wooldridge') # only once
library('wooldridge') # anytime you want to use the data

data('crime2') 
data('crime4')

We can use packages to access many different types of data. To read in a Stata data file, for example, we can use the “haven” package.

Code
# Read in stata data file from online
#library(haven)
#dat_stata <- read_dta('https://www.ssc.wisc.edu/~bhansen/econometrics/DS2004.dta')
#dat_stata <- as.data.frame(dat_stata)

# For More Introductory Econometrics Data, see 
# https://www.ssc.wisc.edu/~bhansen/econometrics/Econometrics%20Data.zip
# https://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm
# R packages: wooldridge, causaldata, Ecdat, AER, ....

Cleaning Data.

Data transformation is often necessary before analysis, so remember to be careful and check your code is doing what you want. (If you have large datasets, you can always test out the code on a sample.)

Code
# Function to Create Sample Datasets
make_noisy_data <- function(n, b=0){
    # Simple Data Generating Process
    x <- seq(1,10, length.out=n) 
    e <- rnorm(n, mean=0, sd=10)
    y <- b*x + e 
    # Obervations
    xy_mat <- data.frame(ID=seq(x), x=x, y=y)
    return(xy_mat)
}

# Two simulated datasets
dat1 <- make_noisy_data(6)
dat2 <- make_noisy_data(6)

# Merging data in long format
dat_merged_long <- rbind(
    cbind(dat1,DF=1),
    cbind(dat2,DF=2))

Now suppose we want to transform into wide format

Code
# Merging data in wide format, First Attempt
dat_merged_wide <- cbind( dat1, dat2)
names(dat_merged_wide) <- c(paste0(names(dat1),'.1'), paste0(names(dat2),'.2'))

# Merging data in wide format, Second Attempt
# higher performance
dat_merged_wide2 <- merge(dat1, dat2,
    by='ID', suffixes=c('.1','.2'))
## CHECK they are the same.
identical(dat_merged_wide, dat_merged_wide2)
## [1] FALSE
# Inspect any differences

# Merging data in wide format, Third Attempt with dedicated package
# (highest performance but with new type of object)
library(data.table)
dat_merged_longDT <- as.data.table(dat_merged_long)
dat_melted <- melt(dat_merged_longDT, id.vars=c('ID', 'DF'))
dat_merged_wide3 <- dcast(dat_melted, ID~DF+variable)

## CHECK they are the same.
identical(dat_merged_wide, dat_merged_wide3)
## [1] FALSE

Often, however, we ultimately want data in long format

Code
# Merging data in long format, Second Attempt with dedicated package 
dat_melted2 <- melt(dat_merged_wide3, measure=c("1_x","1_y","2_x","2_y"))
melt_vars <- strsplit(as.character(dat_melted2[['variable']]),'_')
dat_melted2[,'DF'] <- sapply(melt_vars, `[[`,1)
dat_melted2[,'variable'] <- sapply(melt_vars, `[[`,2)
dat_merged_long2 <- dcast(dat_melted2, DF+ID~variable)
dat_merged_long2 <- as.data.frame(dat_merged_long2)

## CHECK they are the same.
identical( dat_merged_long2, dat_merged_long)
## [1] FALSE

# Further Inspect
dat_merged_long2 <- dat_merged_long2[,c('ID','x','y','DF')]
mapply( identical, dat_merged_long2, dat_merged_long)
##    ID     x     y    DF 
##  TRUE  TRUE  TRUE FALSE

Inspecting Data.

You can find a value by a particular criterion

Code
y <- 1:10

# Return Y-value with minimum absolute difference from 3
abs_diff_y <- abs( y - 3 ) 
abs_diff_y # is this the luckiest number?
##  [1] 2 1 0 1 2 3 4 5 6 7

min(abs_diff_y)
## [1] 0
which.min(abs_diff_y)
## [1] 3
y[ which.min(abs_diff_y) ]
## [1] 3

There are also some useful built in functions for standardizing data

Code
m <- matrix(c(1:3,2*(1:3)),byrow=TRUE,ncol=3)
m
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    2    4    6

# normalize rows
m/rowSums(m)
##           [,1]      [,2] [,3]
## [1,] 0.1666667 0.3333333  0.5
## [2,] 0.1666667 0.3333333  0.5

# normalize columns
t(t(m)/colSums(m))
##           [,1]      [,2]      [,3]
## [1,] 0.3333333 0.3333333 0.3333333
## [2,] 0.6666667 0.6666667 0.6666667

# de-mean rows
sweep(m,1,rowMeans(m), '-')
##      [,1] [,2] [,3]
## [1,]   -1    0    1
## [2,]   -2    0    2

# de-mean columns
sweep(m,2,colMeans(m), '-')
##      [,1] [,2] [,3]
## [1,] -0.5   -1 -1.5
## [2,]  0.5    1  1.5

You can also easily bin and aggregate data

Code
x <- 1:10
cut(x, 4)
##  [1] (0.991,3.25] (0.991,3.25] (0.991,3.25] (3.25,5.5]   (3.25,5.5]  
##  [6] (5.5,7.75]   (5.5,7.75]   (7.75,10]    (7.75,10]    (7.75,10]   
## Levels: (0.991,3.25] (3.25,5.5] (5.5,7.75] (7.75,10]
split(x, cut(x, 4))
## $`(0.991,3.25]`
## [1] 1 2 3
## 
## $`(3.25,5.5]`
## [1] 4 5
## 
## $`(5.5,7.75]`
## [1] 6 7
## 
## $`(7.75,10]`
## [1]  8  9 10
Code
xs <- split(x, cut(x, 4))
sapply(xs, mean)
## (0.991,3.25]   (3.25,5.5]   (5.5,7.75]    (7.75,10] 
##          2.0          4.5          6.5          9.0

# shortcut
aggregate(x, list(cut(x,4)), mean)
##        Group.1   x
## 1 (0.991,3.25] 2.0
## 2   (3.25,5.5] 4.5
## 3   (5.5,7.75] 6.5
## 4    (7.75,10] 9.0

See also https://bookdown.org/rwnahhas/IntroToR/logical.html

13.2 Outputs

Interactive Figures.

Notably, histograms, boxplots, and scatterplots

Code
library(plotly) #install.packages("plotly")
USArrests[,'ID'] <- rownames(USArrests)

# Scatter Plot
fig <- plot_ly(
    USArrests, x = ~UrbanPop, y = ~Assault,
    mode='markers',
    type='scatter',
    hoverinfo='text',
    marker=list( color='rgba(0, 0, 0, 0.5)'),
    text = ~paste('<b>', ID, '</b>',
        "<br>Urban  :", UrbanPop,
        "<br>Assault:", Assault))
fig <- layout(fig,
    showlegend=F,
    title='Crime and Urbanization in America 1975',
    xaxis = list(title = 'Percent of People in an Urban Area'),
    yaxis = list(title = 'Assault Arrests per 100,000 People'))
fig
Code
# Box Plot
fig <- plot_ly(USArrests,
    y=~Murder, color=~cut(UrbanPop,4),
    alpha=0.6, type="box",
    pointpos=0, boxpoints = 'all',
    hoverinfo='text',    
    text = ~paste('<b>', ID, '</b>',
        "<br>Urban  :", UrbanPop,
        "<br>Assault:", Assault,
        "<br>Murder :", Murder))    
fig <- layout(fig,
    showlegend=FALSE,
    title='Crime and Urbanization in America 1975',
    xaxis = list(title = 'Percent of People in an Urban Area'),
    yaxis = list(title = 'Murders Arrests per 100,000 People'))
fig
Code
pop_mean <- mean(USArrests[,'UrbanPop'])
pop_cut <- USArrests[,'UrbanPop'] < pop_mean
murder_lowpop <- USArrests[ pop_cut,'Murder']
murder_highpop <- USArrests[ !pop_cut,'Murder']

# Overlapping Histograms
fig <- plot_ly(alpha=0.6, hovertemplate="%{y}")
fig <- add_histogram(fig, murder_lowpop, name='Low Pop. (< Mean)',
    histnorm = "probability density",
    xbins = list(start=0, size=2))
fig <- add_histogram(fig, murder_highpop, name='High Pop (>= Mean)',
    histnorm = "probability density",
    xbins = list(start=0, size=2))
fig <- layout(fig,
    barmode="overlay",
    title="Crime and Urbanization in America 1975",
    xaxis = list(title='Murders Arrests per 100,000 People'),
    yaxis = list(title='Density'),
    legend=list(title=list(text='<b> % Urban Pop. </b>')) )
fig
Code

# Possible, but less preferable, to stack histograms
# barmode="stack", histnorm="count"

Note that many plots can be made interactive via https://plotly.com/r/. For more details, see examples and then applications.

If you have many points, for example, you can make a 2D histogram.

Code
library(plotly)
fig <- plot_ly(
    USArrests, x = ~UrbanPop, y = ~Assault)
fig <- add_histogram2d(fig, nbinsx=25, nbinsy=25)
fig

Interactive Tables.

You can create an interactive table to explore raw data.

Code
data("USArrests")
library(reactable)
reactable(USArrests, filterable=T, highlight=T)

You can create an interactive table that summarizes the data too.

Code
# Compute summary statistics
vars <- names(USArrests)
stats_list <- lapply(vars, function(v) {
  x <- USArrests[[v]]
  c(
    Variable = v,
    N       = sum(!is.na(x)),
    Mean    = mean(x, na.rm = TRUE),
    SD      = sd(x, na.rm = TRUE),
    Min     = min(x, na.rm = TRUE),
    Q1      = as.numeric(quantile(x, 0.25, na.rm = TRUE)),
    Median  = median(x, na.rm = TRUE),
    Q3      = as.numeric(quantile(x, 0.75, na.rm = TRUE)),
    Max     = max(x, na.rm = TRUE)
  )
})

# Convert list to data frame with numeric columns 
stats_df <- as.data.frame(do.call(rbind, stats_list), stringsAsFactors = FALSE)
num_cols <- setdiff(names(stats_df), "Variable")
stats_df[num_cols] <- lapply(stats_df[num_cols], function(i){
    round(as.numeric(i), 3)
})

# Display interactively
reactable(stats_df)

Polishing.

Your first figures are typically standard, and probably not as good as they should be. Edit your plot to focus on the most useful information. For others to easily comprehend your work, you must also polish the plot. When polishing, you must do two things:

  • Add details that are necessary.
  • Remove details that are not necessary.
Code
# Random Data
x <- seq(1, 10, by=.0002)
e <- rnorm(length(x), mean=0, sd=1)
y <- .25*x + e 

# First Draft
# plot(x, y)

# Second Draft: Focus
# (In this example: relationship magnitude)
xs <- scale(x)
ys <- scale(y)
plot(ys, xs, 
    xlab='', ylab='',
    pch=16, cex=.5, col=grey(0,.2))
mtext(expression('['~X[i]-hat(M)[X]~'] /'~hat(S)[X]), 1, line=2.5)
mtext(expression('['~Y[i]-hat(M)[Y]~'] /'~hat(S)[Y]), 2, line=2.5)
# Add a 45 degree line
abline(a=0, b=1, lty=2, col='red')
legend('topleft', 
    legend=c('data point', '45 deg. line'),
    pch=c(16,NA), lty=c(NA,2), col=c(grey(0,.2), 'red'), 
    bty='n')
title('Standardized Relationship')

Code
# Another Example
xy_dat <- data.frame(x=x, y=y)
par(fig=c(0,1,0,0.9), new=F)
plot(y~x, xy_dat, pch=16, col=rgb(0,0,0,.05), cex=.5,
    xlab='', ylab='') # Format Axis Labels Seperately
mtext( 'y=0.25 x + e\n e ~ standard-normal', 2, line=2.2)
mtext( expression(x%in%~'[0,10]'), 1, line=2.2)
#abline( lm(y~x, data=xy_dat), lty=2)
title('Plot with good features, but too excessive in several ways',
    adj=0, font.main=1)

# Outer Legend (https://stackoverflow.com/questions/3932038/)
outer_legend <- function(...) {
  opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, 0, 0), 
    mar=c(0, 0, 0, 0), new=TRUE)
  on.exit(par(opar))
  plot(0, 0, type='n', bty='n', xaxt='n', yaxt='n')
  legend(...)
}
outer_legend('topright', legend='single data point',
    title='do you see the normal distribution?',
    pch=16, col=rgb(0,0,0,.1), cex=1, bty='n')

Learn to edit your figures:

Which features are most informative depends on what you want to show, and you can always mix and match. Ne aware that each type has benefits and costs. E.g., see

For small datasets, you can plot individual data points with a strip chart. For datasets with spatial information, a map is also helpful. Sometime tables are better than graphs (see https://www.edwardtufte.com/notebook/boxplots-data-test). For useful tips, see C. Wilke (2019) “Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures” https://clauswilke.com/dataviz/

For plotting math, which should be done very sparingly, see https://astrostatistics.psu.edu/su07/R/html/grDevices/html/plotmath.html and https://library.virginia.edu/data/articles/mathematical-annotation-in-r

Static Publishing.

Advanced and Optional

You can export figures with specific dimensions

Code
pdf( 'Figures/plot_example.pdf', height=5, width=5)
# plot goes here
dev.off()

For exporting options, see ?pdf. For saving other types of files, see png("*.png"), tiff("*.tiff"), and jpeg("*.jpg")

You can also export tables in a variety of formats, including many that other software programs can easily read

Code
library(stargazer)
# summary statistics
stargazer(USArrests,
    type='html', 
    summary=T,
    title='Summary Statistics for USArrests')
Summary Statistics for USArrests
Statistic N Mean St. Dev. Min Max
Murder 50 7.788 4.356 0.800 17.400
Assault 50 170.760 83.338 45 337
UrbanPop 50 65.540 14.475 32 91
Rape 50 21.232 9.366 7.300 46.000

Note that many of the best plots are custom made (see https://www.r-graph-gallery.com/). Here are some ones that I have made over the years.

13.3 R-Markdown Reports

We will use R Markdown for communicating results to each other. Note that R and R Markdown are both languages. R studio interprets R code make statistical computations and interprets R Markdown code to produce pretty documents that contain both writing and statistics. Altogether, your project will use

  • R: does statistical computations
  • R Markdown: formats statistical computations for sharing
  • Rstudio: graphical user interface that allows you to easily use both R and R Markdown.

Homework reports are probably the smallest document you can create. They are simple reproducible reports made via R Markdown, which are almost entirely self-contained (showing both code and output). To make them, you need two additional packages

Code
# Packages for Rmarkdown
install.packages("knitr")
install.packages("rmarkdown")

# Other packages frequently used
#install.packages("plotly") #for interactive plots
#install.packages("sf") #for spatial data

You may need to first install additional software on your computer

Example 1: Simple Report.

Download the source file ReportTemplate_1Descriptive.Rmd and then then create it by following these steps

  • Open with Rstudio
  • Change the name to your own
  • Then either point-and-click “knit” or use the console to run rmarkdown::render('ReportTemplate_1Descriptive.Rmd')
  • Open the new .html file in your web browser (e.g., firefox).

13.4 Further Reading

For more on data cleaning, see

For more guidance on how to create Rmarkdown documents, see

If you are still lost, try one of the many online tutorials (such as these)